
 

Abstract—Many  methods  used  to  capture  and  store 
application traces use separate phases for collection of the raw 
trace  and  subsequent  compression  into  a  more  manageable 
form.  While this is viable for short or partial traces, the storage 
requirements become a significant challenge when application 
behavior exceeds 10^12 instructions in length.  A new concept, 
the stratum layer (pl.  strata),  is  borrowed from geology  and 
applied to program behavior. Tracking strata in an application 
enables  significant  algorithmic  compression without  the  need 
for  an  explicit  grammar.   A  tool  utilizing  dynamic  strata 
collection  and  storage  is  described,  and  the  whole  program 
profiles  for  SPEC  CPU  2006  are  collected.   Performance 
statistics  about  the  technique  are  presented,  as  are  various 
application  statistics.  The  execution-time  slowdown  for  this 
technique is moderate, while compression ratios are high.  

I. INTRODUCTION

OLLECTING and storing the complete execution trace of an 
application  enables  compiler  writers,  processor 

architects  and  researchers  to  better  analyze  application 
behavior.   While  it  is  desirable  to  attempt  to  keep  the 
execution time overhead of trace collection low, the limiting 
factor for trace collection is likely to be the patience of the 
person  collecting  the  data;  when  the  overhead  typically 
exceeds about 50x, the usability and utility of the collection 
technique is low.  However, storing collected traces presents 
significant challenges - the amount of data which needs to be 
collected  to  represent  the  lossless  control  flow  of  an 
application  can  easily  be  multiple  terabytes  in  size  if 
performed without significant compression.  As an example, 
on  the  x86_64  architecture,  the  reference  dataset  for  the 
454.calculix  benchmark  in  SPEC  CPU2006  [1]  executes 
more  than  7.3e12  instructions.   At  an  average  instruction 
length of more than four bytes/instruction, merely storing the 
bytes  of  each  instruction  would  require  more  than  30 
terabytes.  And 454.calculix is not even a particularly long 
running application - the reference time is under 2 ½ hours. 
Consider the storage requirements for an application which 
runs  for  multiple  days.   Clearly,  significant  dynamic 
compression is  needed  to facilitate  collection of  complete 
execution traces.  Whole Program Paths [2] provide a means 
by  which  significant  compression  can  be  achieved;  the 
application  is  instrumented  to  collect  acyclic  path 
information, and a formal compression grammar is directly 
applied  to  the  data  generated  by  the  instrumentation 
program.

C

This  paper  extends  the  path-based  concepts  of  Whole 
Program Paths [2]  via a layered  approach – it  utilizes the 
collection  of  cyclic  paths  without  the  use  of  an  explicit 
grammar to perform algorithmic compression.  Conceptually, 
this approach views application execution behavior as having 
multiple  layers  of  content  built  upon  lower  level  layers. 
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Multiple  instructions  form Basic  Blocks;  cycles  of  Basic 
Blocks form a path; cycles of Repeated Paths form a Stratum 
Element;  cycles  of  Repeated  Stratum  Elements  form  a 
Stratum Layer.  Further higher level strata can be expressed 
as cycles of repeated lower level strata, as shown in Figure 1. 

An implementation of  this  approach  enabled  the complete 
traces for all of the reference datasets of SPEC CPU2006 [1] 
to be captured and stored in less than 100 GB of storage. 
The tool was implemented as a PIN [3] instrumentation tool, 
coupled with some additional C code.

II.TOOL OVERVIEW

A Dynamic Whole Program Profiler tool is a superset of a 
hot path profiler – in addition to tracking which paths are the 
most  frequently  executed,  a  whole  program  profiler  must 
track temporal information.  Because of this, a side effect of 
such a tool is that it can report hot path information.  In this 
implementation, multiple processes which communicate via 
shared  memory are  utilized  to  perform the  collection  and 
dynamic  compression  of  the  data.   Doing  so  enables  the 
computational  load to be shared  across  multiple processor 
cores.  Additionally, it improves performance by moving a 
significant  portion  of  the  computational  load  out  of  the 
binary  instrumentation  environment  and  into  native  code. 
The  implementation  is  not  tightly  tied  to  the  PIN 
environment,  and  could  be  ported  to  use other  underlying 
binary instrumentation tools, such as ATOM [5].  Because 
the binary instrumentation toolkit is dynamic, precomputed 
graphs  are  not  available  to  the  instrumentation  program, 
which effectively requires that  the path construction occur 
lazily, and are thus cyclic.

A.Some definitions and abbreviations
Here are some of the definitions and abbreviations used for 
the remainder of this paper.
Bb – Basic Block
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Path – a cycle of Bbs which are tracked by their starting 
addresses.   For  example,  if  the  Bb  addresses  are 
“AABAABAAB”, this breaks down into the following paths: 
Path0 is  A;  Path1 is  BA;  Path2 is  AB;  Path3 is  B.   This 
evaluates  to  (A2)(BA)(AB)(A2)(B),  while  the  optimal 
representation of the example paths evaluates to (A2B)3.
Repeated Path (RP) – consecutive executions of a Path.  In 
the above example, Path0 has an initial count of 2, which is 
written as Path0

2.
Stratum Element – a cycle of repeated paths.  For example, 
if the sequence of repeated paths is “P0

7, P1
12, P0

5, P1
12”, the 

Strata are S0 = P0
7,P1

12,P0
5, and S1 = P1

12.
Repeated Stratum Element – consecutive executions of a 
Stratum Element.  If  Stratum Element S0 was executed 94 
times, this would be written as S0

94.
Stratum Layer –  A cycle  of Repeated Stratum Elements. 
Stratum LayerN is  comprised  of   Stratum Elements  from 
Stratum LayerN-1.  For the initial case of Stratum Layer0, the 
elements are repeated paths. 
DWPP – Dynamic Whole Program Profile

III.THE IMPLEMENTATION

A.Path Construction
As every Basic Block (Bb) is executed, save the disassembly 
of the Bb once to a file, annotated with the starting address 
to facilitate reporting.  Each Bb is instrumented to provide 
the Bb  starting address  and number  of  instructions to  the 
ExtendPath() routine.  The algorithm for this is roughly:
ExtendPath(void *BbAddr, uint32_t numBbInsns)  {

// newpath – the path currently under construction
// prevpath – the previously constructed path
Increment relevant statistics
If (BbAddr not already seen in path being constructed) {

Extend newpath with  BbAddr
newpath.length++;

} else {// a cycle seen, means the path is complete
If (newpath == prevpath) {

prevpath.tripcount++; // a repeated path
reset newpath;

} else { // not an immediately repeated path
ProcessPath (prevpath);
prevpath = newpath;
reset newpath;

}
}

}
There is some additional code to collect statistics and check 
for extremely long paths (an implementation limit of 2048 
was used).   While such long paths might exist, none have 
been encountered to date.
The ProcessPath routine stores the path in a hash table, and 
converts the path data into a unique (uint64_t) path identifier 
for use elsewhere.  The algorithm for the ProcessPath routine 
is:
ProcessPath(struct PATH_QUEUE_ELT *RP) {

Increment relevant statistics

Compute-hash-value (RP)
pathID = Search-the-hash-table-and-add (RP)
PassRPtoStrataServer(pathID, RP.tripcount, isFinalPath);

}

For performance considerations, the communication with the 
strata  analysis  code  is  done  via  shared  memory,  with the 
strata analysis server running as a separate process.  When 
the shared memory buffer is filled with (pathID, tripcount) 
pairs, the strata server will process them.

B.Strata construction
Instead of constructing cycles of Bbs, the strata construction 
uses [pathID, tripcount] pairs to construct cycles of Repeated 
Paths.  The basic algorithm for extending a stratum layer in 
the  ExtendStrataLayer()  routine  is  very  similar  to  the 
ExtendPath()  algorithm,  except  that  the  parameters  are 
passed as a union:
ExtendStratumLayer([pathID, tripcount]) { // int,int

Uint64_t value64 = [pathID, tripcount];
// convert the pair into a single uint64_t

Increment relevant statistics
If (value64 not already seen in cycle being constructed) {

Extend Stratum0 Element(value64)
Stratum0 Element.length++;

} else {// a cycle seen, completes a Stratum0 Element
// newStratum is the newly constructed cycle
// prevStratum is the immediately previously
// constructed cycle
If (newStratum == prevStratum) {

prevStratum.tripcount++;
reset newStratum;

} else {
ProcessStratum(prevStratum);
prevStratum = newStratum;
reset prevStratum;

}
}

}

Once  unique  Repeated  Stratum  Elements  are  discovered, 
they are handed off to the ProcessStratum routine.   Much 
like  to  the  ProcessPath  routine,  ProcessStratum stores  the 
strata data in a hash table, assigns a unique identifier to to it,  
and passes a [stratumID, tripcount] to yet another server.  It  
could be an additional stratum layer server, but in the simple 
instantiation,  this  happens  to  be  a  final  data  compression 
server process, which is also communicated with via shared 
memory:
ProcessStratum(struct STRATUM_ELT* aLayer) {

Increment relevant statistics
Compute-hash-value (aLayer)
stratumID = Search-the-hash-table-and-add (aLayer);
tripcount = aLayer->tripcount;
PassStratumtoCompresionServer (stratumID, tripcount);

}



C. The compression server
The  compression  server  is  a  simple  general  purpose  data 
compressor (using the system libz.so) to further compress the 
data  (in  this  case,  [stratumID,  tripcount]  pairs)  prior  to 
writing it to a file.

D.Reported results & data files
A set of 6 data files are written to during the collection: a 
pair of files comprising the temporal strata information, a file 
containing the  unique  strata0 details,  a  file  containing the 
unique path details such as the disassembly of pertinent Bbs, 
a log containing path statistics, and a log containing strata 
statistics.  The path log also contains a report of the hottest N 
paths  by  trip  count  *  instruction  length,  in  disassembled 
form.

IV.IMPLEMENTATION ENVIRONMENT

The system used to capture  the complete traces  for  all  of 
SPEC  CPU2006  [1]  had  the  following  relevant 
characteristics: x86_64 Linux® (Fedora 7), which uses gcc 
4.1.2;  8GB  memory,  160  GB  of  disk;  2.6Ghz  dual  core 
processor.  The binary instrumentation toolkit used was PIN 
[3]  version  2.2-15113.   The  SPEC CPU2006  benchmarks 
were compiled at an optimization level of –O2, and run in 
“base”  mode.   The  code  for  the  tool  is  available  at 
http://www.[URL].   PureDB  [7]  was  used  as  a  simple 
database to store content, and libz.so was used to provide a 
final level of general compression of content in some of the 
data files.

V.RESULTS

A.Execution time performance
For the machine used, a run of SPEC CPU2006 [1] using the 
reference  datasets  was  initially  performed  without  any 
instrumentation, followed eventually by a run (albeit a single 
iteration) using the DWPP tool.  Full results are in Table 1.

Benchmark
Ratios: 
no tool

Ratios: 
DWPP

   DWPP 
overhead

400.perlbench 12.8 0.416 30.76
401.bzip2 10 0.11 90.9
403.gcc 9.54 0.734 12.99
429.mcf 7.53 0.297 25.35
445.gobmk 15.4 0.332 46.38
456.hmmer 10.3 0.0115 895.65
458.sjeng 12.5 0.0655 190.83
462.libquantum 17.2 1.85 9.29
464.h264ref 16.1 0.384 41.92
471.omnetpp 9.02 0.643 14.02
473.astar 8.22 0.373 22.03
483.xalancbmk 6.16 0.562 10.96
410.bwaves 5.88 0.992 5.92
416.gamess 14.3 0.963 14.84
433.milc 11.9 2.95 4.03

434.zeusmp 9.28 3.28 2.82
435.gromacs 8.27 1.42 5.82
436.cactusADM 6.9 2.38 2.89
437.leslie3d 6.31 1.82 3.46
444.namd 11.5 0.158 72.78
447.dealII 14.8 0.414 35.74
450.soplex 11.1 0.158 70.25
453.povray 14.9 0.703 21.19
454.calculix 4.36 0.315 13.84
459.GemsFDTD 7.66 3.00 2.55
465.tonto 6.71 0.382 17.56
470.lbm 13.3 6.22 2.13
481.wrf 7.73 0.862 8.96
482.sphinx3 14.7 0.943 15.58

The slowdowns ranged from 2.1x on 470.lbm, to 895x on 
456.hmmer.   The  geometric  mean  for  all  of  the  SPEC 
CPU2006  reference  datasets  is  16.9,  with  only  2  having 
slowdowns of over 100x.

B.Compression
The  compression  ratio  is  calculated  using  an  average 
instruction length of just over 4.2 bytes.  This was computed 
from a static disassembly of libc and the emacs executable 
on the test system.  The dynamic average instruction length 
was  not  computed,  but  could  be  tracked  by  further 
modification  of  the  DWPP  tool.   Thus,  the  number  of 
dynamically executed instructions * 4.2 is computed to be 
the “uncompressed” size.  The size of all files written by the 
DWPP  tool  is  the  “compressed”  size.   The  adjusted 
compression ratios are given in Table 2.

Application and 
run number

Number 
Instructions 
Executed

Net file sizes
Adjusted 

compression 
ratio

astar_1 4.218E+11 1.238E+09 1428
astar_2 8.532E+11 1.572E+09 2276.4
bwaves_1 3.740E+12 2.350E+09 6682.2
bzip2_1 4.275E+11 9.098E+08 1969.8
bzip2_2 1.788E+11 3.208E+08 2339.4
bzip2_3 3.090E+11 4.129E+08 3141.6
bzip2_4 5.457E+11 9.554E+08 2398.2
bzip2_5 5.992E+11 8.317E+08 3024
bzip2_6 3.416E+11 7.453E+08 1923.6
cactusADM_1 2.780E+12 5.300E+06 2202937.8
calculix_1 7.393E+12 5.489E+09 5653.2
dealII_1 1.905E+12 1.612E+09 4964.4
gamess_1 1.089E+12 3.823E+08 11965.8
gamess_2 7.889E+11 2.440E+08 13578.6
gamess_3 3.436E+12 1.005E+09 14351.4
gcc_1 8.115E+10 1.101E+08 3091.2
gcc_2 1.520E+11 2.562E+08 2490.6
gcc_3 1.470E+11 1.313E+08 4699.8
gcc_4 1.110E+11 1.250E+08 3725.4
gcc_5 1.172E+11 1.147E+08 4288.2
gcc_6 1.593E+11 1.499E+08 4464.6



gcc_7 1.840E+11 1.392E+08 5548.2
gcc_8 1.738E+11 9.877E+07 7392
gcc_9 5.945E+10 2.017E+08 1234.8
GemsFDTD_1 2.500E+12 6.407E+06 1638928.2
gobmk_1 2.313E+11 2.449E+09 394.8
gobmk_2 6.136E+11 3.913E+09 655.2
gobmk_3 3.172E+11 2.253E+09 588
gobmk_4 2.304E+11 2.863E+09 336
gobmk_5 3.287E+11 2.568E+09 537.6
gromacs_1 2.000E+12 6.088E+08 13792.8
h264ref_1 5.037E+11 3.235E+08 6539.4
h264ref_2 4.202E+11 2.486E+08 7098
h264ref_3 3.814E+12 2.093E+09 7652.4
hmmer_1 8.953E+11 4.270E+09 877.8
hmmer_2 1.898E+12 7.647E+09 1041.6
lbm_1 1.277E+12 3.242E+06 1654371.6
leslie3d_1 4.131E+12 9.413E+06 1843031.4
libquantum_1 2.264E+12 6.180E+08 15384.6
mcf_1 3.892E+11 2.048E+09 798
milc_1 1.169E+12 1.513E+08 32470.2
namd_1 2.307E+12 1.404E+09 6900.6
omnetpp_1 5.940E+11 5.546E+08 4498.2
perlbench_1 1.097E+12 7.943E+08 5796
perlbench_2 3.805E+11 9.319E+07 17144.4
perlbench_3 6.992E+11 1.936E+08 15166.2
povray_1 9.997E+11 1.260E+08 33314.4
sjeng_1 2.306E+12 4.328E+09 2234.4
soplex_1 3.761E+11 2.066E+09 764.4
soplex_1 3.870E+11 8.206E+08 1978.2
sphinx_1 3.128E+12 2.409E+09 5451.6
tonto_1 3.739E+12 1.526E+09 10285.8
wrf_1 3.894E+12 9.027E+07 181167
Xalan_1 1.202E+12 2.856E+08 17677.8
zeusmp_1 2.039E+12 3.154E+06 2714703.6

These range from a low of 336 (4th dataset in 445.gobmk) to 
2.71 Million for 434.zeusmp.  The mean of the compression 
ratios was almost 192,000,  while the geometric  mean was 
7069.

C.Path statistics
Data  about  mean path  lengths  and  the  number  of  unique 
paths  for  a  particular  application/dataset  combination  are 
also reported by the tool.  These are shown in Table 3.

Application Number of 
Paths

Mean Path
Length in 

Bbs

Unique
Paths

astar_1 10548297506 6 11289
astar_2 16697033084 8 19380
bwaves_1 1.80494E+11 1 1324
bzip2_1 15239062264 4 37049
bzip2_2 12561468469 2 12454
bzip2_3 11183249209 4 7766

bzip2_4 32750358253 2 31969
bzip2_5 15845715380 6 14653
bzip2_6 13486555907 3 37091
cactusADM_1 5761332355 10 5777
calculix_1 2.56404E+11 2 13594
dealII_1 1.06533E+11 3 28421
gamess_1 19351628019 5 18592
gamess_2 15340767343 4 18548
gamess_3 68983774581 4 20841
gcc_1 5541329594 3 149617
gcc_2 6389527821 5 281720
gcc_3 13195331219 2 169939
gcc_4 9587888749 2 163620
gcc_5 11060764022 2 152740
gcc_6 15127658645 2 185512
gcc_7 17063849928 2 149302
gcc_8 15170012455 2 113852
gcc_9 2235594999 6 265215
GemsFDTD_1 30541153872 2 4481
gobmk_1 6627190679 6 3457064
gobmk_2 15978829737 7 5154542
gobmk_3 15471200501 4 2874788
gobmk_4 6449098436 6 4102959
gobmk_5 8841556002 7 3577811
gromacs_1 15139716159 5 5405
h264ref_1 19572134739 2 9093
h264ref_2 21768823736 1 149100
h264ref_3 1.9502E+11 1 199877
hmmer_1 27159450117 4 9649
hmmer_2 57506091271 4 3270
lbm_1 3970413618 7 507
leslie3d_1 1.13395E+11 1 1886
libquantum_1 2.26541E+11 1 1146
mcf_1 16715313437 4 2441
milc_1 21465737881 2 1902
namd_1 46065088739 2 5180
omnetpp_1 12726589529 11 24448
perlbench_1 18476153860 12 132088
perlbench_2 3739943883 21 25236
perlbench_3 10361809465 13 51770
povray_1 10081996720 15 33263
sjeng_1 78029410069 6 2006699
soplex_1 26022072112 2 23619
soplex_1 26510019728 2 16634
sphinx_1 1.91775E+11 1 11244
tonto_1 1.12739E+11 3 54473
wrf_1 1.56834E+11 1 15435
Xalan_1 82228019093 3 22942
zeusmp_1 40390252069 1 2648

Because the DWPP tool is a superset of a hot path profiler, it 
is trivial to derive statistical data about paths from a run.  For 
example, plots of path length (in Bbs) vs. path trip count in 
Figure 2.



D.Strata statistics
Similarly, plots of strata length (in numbers of paths) can be 
plotted from the data as show in Figure 3.

Strata centric data are shown in Table 4.  Some interesting 
characteristics appear – for some of the application/dataset 
combinations, there are only a handful of unique strata, while 
in others there are a very large number of unique strata.  The 
number of immediately consecutive executions of any given 
strata is variable, and is clearly dependent upon the dataset 
used.

Application and 
run

Unique 
strata

Total 
Strata

Consecutive
executions

astar_1 216725 1.514E+09 49855727
astar_2 174433 2.278E+09 29862256
bwaves_1 589 1.678E+10 7886622569
bzip2_1 2952183 636494417 64910223
bzip2_2 328460 253512210 6814624
bzip2_3 249687 479882052 115277700
bzip2_4 1676991 878405761 148328837
bzip2_5 1471941 636991494 66470614
bzip2_6 2532973 499311315 46659535
cactusADM_1 921 1.667E+09 1638347722
calculix_1 292937 8.179E+10 2.721E+10

dealII_1 637944 9.638E+09 3702997850
gamess_1 71226 2.115E+09 845557941
gamess_2 94822 1.706E+09 973215692
gamess_3 105316 9.423E+09 3091842046
gcc_1 121652 125954760 9570987
gcc_2 448882 257486208 37621706
gcc_3 196276 135584262 15385895
gcc_4 172603 158218562 9468755
gcc_5 161262 126838013 13553830
gcc_6 213331 154307156 20188679
gcc_7 142393 239746514 26643040
gcc_8 109381 194460576 20120248
gcc_9 350422 105818453 10554208
GemsFDTD_1 1820 377977122 357852740
gobmk_1 504845 303331740 37570664
gobmk_2 884401 809819115 135773748
gobmk_3 483723 977022181 347132641
gobmk_4 567802 279714633 35362127
gobmk_5 561704 414931850 62979348
gromacs_1 404537 1.12E+09 504504822
h264ref_1 190506 1.33E+09 605894273
h264ref_2 190331 747986989 321559454
h264ref_3 673614 8.264E+09 4422079684
hmmer_1 1549022 2.216E+09 35505202
hmmer_2 1543836 4.397E+09 41474736
lbm_1 227 42665658 32942217
leslie3d_1 610 529258683 443713452
libquantum_1 57273 1.254E+10 3009396591
mcf_1 607635 2.069E+09 690305335
milc_1 1132 6.083E+09 2257099434
namd_1 2269578 985288902 145758661
omnetpp_1 102058 732083937 23405995
perlbench_1 438635 1.961E+09 388446892
perlbench_2 32379 590322600 212547492
perlbench_3 111628 719276959 377253717
povray_1 47414 735294691 40473467
sjeng_1 2772428 4.94E+09 136589445
soplex_1 1157099 1.614E+09 246245241
soplex_1 699130 1.905E+09 858662299
sphinx_1 244483 7.651E+09 5121578643
tonto_1 55423 9.24E+09 6341782946
wrf_1 31058 4.358E+09 3738161098
Xalan_1 269080 1.597E+09 1021390036
zeusmp_1 1716 168257099 162929849

E.Some comments on 456.hmmer, 458.sjeng, 401.bzip
The three worst cases for execution-time performance were 
456.hmmer, 458.sjeng, and 401.bzip.  There is a common set 
of attributes for these: they have more unique strata elements 
than the width of the hash table to store the strata (which was 
256K), and only a very small percentage (under 3%) of the 
strata elements had a consecutive trip count greater than one. 
This strongly implies that the performance on these would 



significantly increase with a wider (and thus less deep) hash 
table for this particular data structure.

VI.ENGINEERING CONSIDERATIONS AND LIMITATIONS

While  there  were  no  formal  collection-time  performance 
constraints  or  requirements,  there  were  a  lot  of 
implementation  decisions  made  to  minimize  memory 
consumption  and  maximize  collection  performance.   The 
benchmark 445.gobmk has a  very large  number of unique 
paths; it required significant work to keep experimental runs 
from  swapping  due  to  this  characteristic.   At  the  time 
development started, PIN [3] did not support multi-threaded 
tools,  and  this  also  contributed  to  the  use  of  multiple 
processes.   Once  the  code  had  been  rearranged  to  utilize 
separate  processes,  456.hmmer,  458.sjeng,  and  401.bzip 
drove algorithmic changes to boost performance.
Program phase change behavior was assumed; to compensate 
for  this,  the  hash  tables  are  periodically  sorted  to  reduce 
pointer chasing.  The amount of performance gain by doing 
this was never carefully measured, but empirically seemed to 
make things “go faster”.
Attempts were made to  compute and construct  the Strata1 

Layer,  but  that  very  quickly  was  abandoned  due  to  the 
amount of additional memory consumed (many runs started 
swapping).  At present, the tool is limited to collect profiles 
from single-threaded applications, and only the control flow 
information.

VII.RELATED WORK

Whole Execution Traces  [4] provides a unified format for 
multiple kinds of profiles which are instrumented at compile 
time  with  a  statement  (“Trimaran’s  intermediate  level 
statement”) [10] granularity.   Compression levels averaged 
41  for  the  datasets  involved;  collection  performance 
overhead is not described except as executed on a simulator.
Whole  Program  Paths  [2]  was  implemented  with  a  static 
binary instrumentation tool,  and the collected  control-flow 
profiles  were  compressed  separately  from  collection. 
Compression levels ranged from 7.3  to  392.8;  little  detail 
about  execution  time  performance  is  provided  –  an 
instrumented  database  had  a  15.6x  slowdown  for  trace 
collection alone.
Nested Loop Recognition [8]  analyzes  data address  traces 
and reconstructs control  flow loops.   The first 100e6 load 
instructions were traced, with compression ratios for control 
flow achieved over 100,000 (vs. bzip2) in some cases.  No 
details of execution performance overhead were given.
Seekable  Compressed  Traces  [9]  utilizes  multi-stage 
algorithms tailored to the type of trace collected, and also 
provides  mechanisms  to  start  playback  and  analysis  at 
arbitrary points in the trace.   Compression ratios exceeded 
130,000 for one test case; no performance data about trace 
collection were given.
Of  the  mentioned  works,  only  Whole  Program  Paths  [2] 
focused solely upon collection of control flow traces, making 
direct  comparison  difficult.   Curiously,  there  is  little  data 
about  absolute  trace  collection  overhead  performance, 

possibly because the scale of trace collection of any kind to 
date  has  exceeded  the  capacity  of  commonly  available 
hardware, or a need to use a simulator to collect some of the 
data.

VIII.CONCLUSIONS & FUTURE DIRECTIONS

Numerous  further  investigations  suggest  themselves,  but 
none are currently underway.  Some of these include:
• Investigation of isometric cyclical paths, esp. rotational 

isomers  (ABCD  and  BCDA  are  rotational  isomers, 
while ACBD and ABCD are simple isomers)

• Can  phase  behavior  be  easily  detected  from  the 
collected data?

• Higher Strata Layer compression beyond Layer0 - which 
would require systems with much more memory.  Some 
initial experiments hinted that a combinatorial explosion 
of  data  happens  above  Layer0,  which  means  that  the 
pyramid diagram of [Figure 1] may be more correctly 
shaped as an hourglass.

• Perform direct execution performance and compression 
ratio  comparisons  of  SPEC  CPU2006  using  the 
techniques described in [2,4,8,9] as applied to complete 
control-flow traces.

Using  a  DWPP  tool,  it  is  possible  to  collect  and  store 
complete  program  instruction  traces  on  a  reasonably 
configured computer system with moderate overhead.  This 
may  enable  broader  investigations  into  path  and  strata 
characteristics  on  a  wide  range  of  arbitrary  applications. 
Such  a  tool  also  provides  a  means  of   non-statistical 
(lossless)  analysis for  tool  chain developers  and processor 
architects when coupled with a playback mechanism.  And as 
applications  continue  to  scale  up  in  size  and  duration, 
collection  of  relevant  traces/profiles  will  continue to  be  a 
challenge, and require new techniques to simply collect these 
data.
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