

Abstract—Many methods used to capture and store
application traces use separate phases for collection of the raw
trace and subsequent compression into a more manageable
form. While this is viable for short or partial traces, the storage
requirements become a significant challenge when application
behavior exceeds 10^12 instructions in length. A new concept,
the stratum layer (pl. strata), is borrowed from geology and
applied to program behavior. Tracking strata in an application
enables significant algorithmic compression without the need
for an explicit grammar. A tool utilizing dynamic strata
collection and storage is described, and the whole program
profiles for SPEC CPU 2006 are collected. Performance
statistics about the technique are presented, as are various
application statistics. The execution-time slowdown for this
technique is moderate, while compression ratios are high.

I. INTRODUCTION

OLLECTING and storing the complete execution trace of an
application enables compiler writers, processor

architects and researchers to better analyze application
behavior. While it is desirable to attempt to keep the
execution time overhead of trace collection low, the limiting
factor for trace collection is likely to be the patience of the
person collecting the data; when the overhead typically
exceeds about 50x, the usability and utility of the collection
technique is low. However, storing collected traces presents
significant challenges - the amount of data which needs to be
collected to represent the lossless control flow of an
application can easily be multiple terabytes in size if
performed without significant compression. As an example,
on the x86_64 architecture, the reference dataset for the
454.calculix benchmark in SPEC CPU2006 [1] executes
more than 7.3e12 instructions. At an average instruction
length of more than four bytes/instruction, merely storing the
bytes of each instruction would require more than 30
terabytes. And 454.calculix is not even a particularly long
running application - the reference time is under 2 ½ hours.
Consider the storage requirements for an application which
runs for multiple days. Clearly, significant dynamic
compression is needed to facilitate collection of complete
execution traces. Whole Program Paths [2] provide a means
by which significant compression can be achieved; the
application is instrumented to collect acyclic path
information, and a formal compression grammar is directly
applied to the data generated by the instrumentation
program.

C

This paper extends the path-based concepts of Whole
Program Paths [2] via a layered approach – it utilizes the
collection of cyclic paths without the use of an explicit
grammar to perform algorithmic compression. Conceptually,
this approach views application execution behavior as having
multiple layers of content built upon lower level layers.

Author footnote left blank for submission purposes

Multiple instructions form Basic Blocks; cycles of Basic
Blocks form a path; cycles of Repeated Paths form a Stratum
Element; cycles of Repeated Stratum Elements form a
Stratum Layer. Further higher level strata can be expressed
as cycles of repeated lower level strata, as shown in Figure 1.

An implementation of this approach enabled the complete
traces for all of the reference datasets of SPEC CPU2006 [1]
to be captured and stored in less than 100 GB of storage.
The tool was implemented as a PIN [3] instrumentation tool,
coupled with some additional C code.

II.TOOL OVERVIEW

A Dynamic Whole Program Profiler tool is a superset of a
hot path profiler – in addition to tracking which paths are the
most frequently executed, a whole program profiler must
track temporal information. Because of this, a side effect of
such a tool is that it can report hot path information. In this
implementation, multiple processes which communicate via
shared memory are utilized to perform the collection and
dynamic compression of the data. Doing so enables the
computational load to be shared across multiple processor
cores. Additionally, it improves performance by moving a
significant portion of the computational load out of the
binary instrumentation environment and into native code.
The implementation is not tightly tied to the PIN
environment, and could be ported to use other underlying
binary instrumentation tools, such as ATOM [5]. Because
the binary instrumentation toolkit is dynamic, precomputed
graphs are not available to the instrumentation program,
which effectively requires that the path construction occur
lazily, and are thus cyclic.

A.Some definitions and abbreviations
Here are some of the definitions and abbreviations used for
the remainder of this paper.
Bb – Basic Block

Dynamic Whole Program Profiling
Richard Gorton

GPG Developer Tools
Advanced Micro Devices, Inc

Path – a cycle of Bbs which are tracked by their starting
addresses. For example, if the Bb addresses are
“AABAABAAB”, this breaks down into the following paths:
Path0 is A; Path1 is BA; Path2 is AB; Path3 is B. This
evaluates to (A2)(BA)(AB)(A2)(B), while the optimal
representation of the example paths evaluates to (A2B)3.
Repeated Path (RP) – consecutive executions of a Path. In
the above example, Path0 has an initial count of 2, which is
written as Path0

2.
Stratum Element – a cycle of repeated paths. For example,
if the sequence of repeated paths is “P0

7, P1
12, P0

5, P1
12”, the

Strata are S0 = P0
7,P1

12,P0
5, and S1 = P1

12.
Repeated Stratum Element – consecutive executions of a
Stratum Element. If Stratum Element S0 was executed 94
times, this would be written as S0

94.
Stratum Layer – A cycle of Repeated Stratum Elements.
Stratum LayerN is comprised of Stratum Elements from
Stratum LayerN-1. For the initial case of Stratum Layer0, the
elements are repeated paths.
DWPP – Dynamic Whole Program Profile

III.THE IMPLEMENTATION

A.Path Construction
As every Basic Block (Bb) is executed, save the disassembly
of the Bb once to a file, annotated with the starting address
to facilitate reporting. Each Bb is instrumented to provide
the Bb starting address and number of instructions to the
ExtendPath() routine. The algorithm for this is roughly:
ExtendPath(void *BbAddr, uint32_t numBbInsns) {

// newpath – the path currently under construction
// prevpath – the previously constructed path
Increment relevant statistics
If (BbAddr not already seen in path being constructed) {

Extend newpath with BbAddr
newpath.length++;

} else {// a cycle seen, means the path is complete
If (newpath == prevpath) {

prevpath.tripcount++; // a repeated path
reset newpath;

} else { // not an immediately repeated path
ProcessPath (prevpath);
prevpath = newpath;
reset newpath;

}
}

}
There is some additional code to collect statistics and check
for extremely long paths (an implementation limit of 2048
was used). While such long paths might exist, none have
been encountered to date.
The ProcessPath routine stores the path in a hash table, and
converts the path data into a unique (uint64_t) path identifier
for use elsewhere. The algorithm for the ProcessPath routine
is:
ProcessPath(struct PATH_QUEUE_ELT *RP) {

Increment relevant statistics

Compute-hash-value (RP)
pathID = Search-the-hash-table-and-add (RP)
PassRPtoStrataServer(pathID, RP.tripcount, isFinalPath);

}

For performance considerations, the communication with the
strata analysis code is done via shared memory, with the
strata analysis server running as a separate process. When
the shared memory buffer is filled with (pathID, tripcount)
pairs, the strata server will process them.

B.Strata construction
Instead of constructing cycles of Bbs, the strata construction
uses [pathID, tripcount] pairs to construct cycles of Repeated
Paths. The basic algorithm for extending a stratum layer in
the ExtendStrataLayer() routine is very similar to the
ExtendPath() algorithm, except that the parameters are
passed as a union:
ExtendStratumLayer([pathID, tripcount]) { // int,int

Uint64_t value64 = [pathID, tripcount];
// convert the pair into a single uint64_t

Increment relevant statistics
If (value64 not already seen in cycle being constructed) {

Extend Stratum0 Element(value64)
Stratum0 Element.length++;

} else {// a cycle seen, completes a Stratum0 Element
// newStratum is the newly constructed cycle
// prevStratum is the immediately previously
// constructed cycle
If (newStratum == prevStratum) {

prevStratum.tripcount++;
reset newStratum;

} else {
ProcessStratum(prevStratum);
prevStratum = newStratum;
reset prevStratum;

}
}

}

Once unique Repeated Stratum Elements are discovered,
they are handed off to the ProcessStratum routine. Much
like to the ProcessPath routine, ProcessStratum stores the
strata data in a hash table, assigns a unique identifier to to it,
and passes a [stratumID, tripcount] to yet another server. It
could be an additional stratum layer server, but in the simple
instantiation, this happens to be a final data compression
server process, which is also communicated with via shared
memory:
ProcessStratum(struct STRATUM_ELT* aLayer) {

Increment relevant statistics
Compute-hash-value (aLayer)
stratumID = Search-the-hash-table-and-add (aLayer);
tripcount = aLayer->tripcount;
PassStratumtoCompresionServer (stratumID, tripcount);

}

C. The compression server
The compression server is a simple general purpose data
compressor (using the system libz.so) to further compress the
data (in this case, [stratumID, tripcount] pairs) prior to
writing it to a file.

D.Reported results & data files
A set of 6 data files are written to during the collection: a
pair of files comprising the temporal strata information, a file
containing the unique strata0 details, a file containing the
unique path details such as the disassembly of pertinent Bbs,
a log containing path statistics, and a log containing strata
statistics. The path log also contains a report of the hottest N
paths by trip count * instruction length, in disassembled
form.

IV.IMPLEMENTATION ENVIRONMENT

The system used to capture the complete traces for all of
SPEC CPU2006 [1] had the following relevant
characteristics: x86_64 Linux® (Fedora 7), which uses gcc
4.1.2; 8GB memory, 160 GB of disk; 2.6Ghz dual core
processor. The binary instrumentation toolkit used was PIN
[3] version 2.2-15113. The SPEC CPU2006 benchmarks
were compiled at an optimization level of –O2, and run in
“base” mode. The code for the tool is available at
http://www.[URL]. PureDB [7] was used as a simple
database to store content, and libz.so was used to provide a
final level of general compression of content in some of the
data files.

V.RESULTS

A.Execution time performance
For the machine used, a run of SPEC CPU2006 [1] using the
reference datasets was initially performed without any
instrumentation, followed eventually by a run (albeit a single
iteration) using the DWPP tool. Full results are in Table 1.

Benchmark
Ratios:
no tool

Ratios:
DWPP

 DWPP
overhead

400.perlbench 12.8 0.416 30.76
401.bzip2 10 0.11 90.9
403.gcc 9.54 0.734 12.99
429.mcf 7.53 0.297 25.35
445.gobmk 15.4 0.332 46.38
456.hmmer 10.3 0.0115 895.65
458.sjeng 12.5 0.0655 190.83
462.libquantum 17.2 1.85 9.29
464.h264ref 16.1 0.384 41.92
471.omnetpp 9.02 0.643 14.02
473.astar 8.22 0.373 22.03
483.xalancbmk 6.16 0.562 10.96
410.bwaves 5.88 0.992 5.92
416.gamess 14.3 0.963 14.84
433.milc 11.9 2.95 4.03

434.zeusmp 9.28 3.28 2.82
435.gromacs 8.27 1.42 5.82
436.cactusADM 6.9 2.38 2.89
437.leslie3d 6.31 1.82 3.46
444.namd 11.5 0.158 72.78
447.dealII 14.8 0.414 35.74
450.soplex 11.1 0.158 70.25
453.povray 14.9 0.703 21.19
454.calculix 4.36 0.315 13.84
459.GemsFDTD 7.66 3.00 2.55
465.tonto 6.71 0.382 17.56
470.lbm 13.3 6.22 2.13
481.wrf 7.73 0.862 8.96
482.sphinx3 14.7 0.943 15.58

The slowdowns ranged from 2.1x on 470.lbm, to 895x on
456.hmmer. The geometric mean for all of the SPEC
CPU2006 reference datasets is 16.9, with only 2 having
slowdowns of over 100x.

B.Compression
The compression ratio is calculated using an average
instruction length of just over 4.2 bytes. This was computed
from a static disassembly of libc and the emacs executable
on the test system. The dynamic average instruction length
was not computed, but could be tracked by further
modification of the DWPP tool. Thus, the number of
dynamically executed instructions * 4.2 is computed to be
the “uncompressed” size. The size of all files written by the
DWPP tool is the “compressed” size. The adjusted
compression ratios are given in Table 2.

Application and
run number

Number
Instructions
Executed

Net file sizes
Adjusted

compression
ratio

astar_1 4.218E+11 1.238E+09 1428
astar_2 8.532E+11 1.572E+09 2276.4
bwaves_1 3.740E+12 2.350E+09 6682.2
bzip2_1 4.275E+11 9.098E+08 1969.8
bzip2_2 1.788E+11 3.208E+08 2339.4
bzip2_3 3.090E+11 4.129E+08 3141.6
bzip2_4 5.457E+11 9.554E+08 2398.2
bzip2_5 5.992E+11 8.317E+08 3024
bzip2_6 3.416E+11 7.453E+08 1923.6
cactusADM_1 2.780E+12 5.300E+06 2202937.8
calculix_1 7.393E+12 5.489E+09 5653.2
dealII_1 1.905E+12 1.612E+09 4964.4
gamess_1 1.089E+12 3.823E+08 11965.8
gamess_2 7.889E+11 2.440E+08 13578.6
gamess_3 3.436E+12 1.005E+09 14351.4
gcc_1 8.115E+10 1.101E+08 3091.2
gcc_2 1.520E+11 2.562E+08 2490.6
gcc_3 1.470E+11 1.313E+08 4699.8
gcc_4 1.110E+11 1.250E+08 3725.4
gcc_5 1.172E+11 1.147E+08 4288.2
gcc_6 1.593E+11 1.499E+08 4464.6

gcc_7 1.840E+11 1.392E+08 5548.2
gcc_8 1.738E+11 9.877E+07 7392
gcc_9 5.945E+10 2.017E+08 1234.8
GemsFDTD_1 2.500E+12 6.407E+06 1638928.2
gobmk_1 2.313E+11 2.449E+09 394.8
gobmk_2 6.136E+11 3.913E+09 655.2
gobmk_3 3.172E+11 2.253E+09 588
gobmk_4 2.304E+11 2.863E+09 336
gobmk_5 3.287E+11 2.568E+09 537.6
gromacs_1 2.000E+12 6.088E+08 13792.8
h264ref_1 5.037E+11 3.235E+08 6539.4
h264ref_2 4.202E+11 2.486E+08 7098
h264ref_3 3.814E+12 2.093E+09 7652.4
hmmer_1 8.953E+11 4.270E+09 877.8
hmmer_2 1.898E+12 7.647E+09 1041.6
lbm_1 1.277E+12 3.242E+06 1654371.6
leslie3d_1 4.131E+12 9.413E+06 1843031.4
libquantum_1 2.264E+12 6.180E+08 15384.6
mcf_1 3.892E+11 2.048E+09 798
milc_1 1.169E+12 1.513E+08 32470.2
namd_1 2.307E+12 1.404E+09 6900.6
omnetpp_1 5.940E+11 5.546E+08 4498.2
perlbench_1 1.097E+12 7.943E+08 5796
perlbench_2 3.805E+11 9.319E+07 17144.4
perlbench_3 6.992E+11 1.936E+08 15166.2
povray_1 9.997E+11 1.260E+08 33314.4
sjeng_1 2.306E+12 4.328E+09 2234.4
soplex_1 3.761E+11 2.066E+09 764.4
soplex_1 3.870E+11 8.206E+08 1978.2
sphinx_1 3.128E+12 2.409E+09 5451.6
tonto_1 3.739E+12 1.526E+09 10285.8
wrf_1 3.894E+12 9.027E+07 181167
Xalan_1 1.202E+12 2.856E+08 17677.8
zeusmp_1 2.039E+12 3.154E+06 2714703.6

These range from a low of 336 (4th dataset in 445.gobmk) to
2.71 Million for 434.zeusmp. The mean of the compression
ratios was almost 192,000, while the geometric mean was
7069.

C.Path statistics
Data about mean path lengths and the number of unique
paths for a particular application/dataset combination are
also reported by the tool. These are shown in Table 3.

Application Number of
Paths

Mean Path
Length in

Bbs

Unique
Paths

astar_1 10548297506 6 11289
astar_2 16697033084 8 19380
bwaves_1 1.80494E+11 1 1324
bzip2_1 15239062264 4 37049
bzip2_2 12561468469 2 12454
bzip2_3 11183249209 4 7766

bzip2_4 32750358253 2 31969
bzip2_5 15845715380 6 14653
bzip2_6 13486555907 3 37091
cactusADM_1 5761332355 10 5777
calculix_1 2.56404E+11 2 13594
dealII_1 1.06533E+11 3 28421
gamess_1 19351628019 5 18592
gamess_2 15340767343 4 18548
gamess_3 68983774581 4 20841
gcc_1 5541329594 3 149617
gcc_2 6389527821 5 281720
gcc_3 13195331219 2 169939
gcc_4 9587888749 2 163620
gcc_5 11060764022 2 152740
gcc_6 15127658645 2 185512
gcc_7 17063849928 2 149302
gcc_8 15170012455 2 113852
gcc_9 2235594999 6 265215
GemsFDTD_1 30541153872 2 4481
gobmk_1 6627190679 6 3457064
gobmk_2 15978829737 7 5154542
gobmk_3 15471200501 4 2874788
gobmk_4 6449098436 6 4102959
gobmk_5 8841556002 7 3577811
gromacs_1 15139716159 5 5405
h264ref_1 19572134739 2 9093
h264ref_2 21768823736 1 149100
h264ref_3 1.9502E+11 1 199877
hmmer_1 27159450117 4 9649
hmmer_2 57506091271 4 3270
lbm_1 3970413618 7 507
leslie3d_1 1.13395E+11 1 1886
libquantum_1 2.26541E+11 1 1146
mcf_1 16715313437 4 2441
milc_1 21465737881 2 1902
namd_1 46065088739 2 5180
omnetpp_1 12726589529 11 24448
perlbench_1 18476153860 12 132088
perlbench_2 3739943883 21 25236
perlbench_3 10361809465 13 51770
povray_1 10081996720 15 33263
sjeng_1 78029410069 6 2006699
soplex_1 26022072112 2 23619
soplex_1 26510019728 2 16634
sphinx_1 1.91775E+11 1 11244
tonto_1 1.12739E+11 3 54473
wrf_1 1.56834E+11 1 15435
Xalan_1 82228019093 3 22942
zeusmp_1 40390252069 1 2648

Because the DWPP tool is a superset of a hot path profiler, it
is trivial to derive statistical data about paths from a run. For
example, plots of path length (in Bbs) vs. path trip count in
Figure 2.

D.Strata statistics
Similarly, plots of strata length (in numbers of paths) can be
plotted from the data as show in Figure 3.

Strata centric data are shown in Table 4. Some interesting
characteristics appear – for some of the application/dataset
combinations, there are only a handful of unique strata, while
in others there are a very large number of unique strata. The
number of immediately consecutive executions of any given
strata is variable, and is clearly dependent upon the dataset
used.

Application and
run

Unique
strata

Total
Strata

Consecutive
executions

astar_1 216725 1.514E+09 49855727
astar_2 174433 2.278E+09 29862256
bwaves_1 589 1.678E+10 7886622569
bzip2_1 2952183 636494417 64910223
bzip2_2 328460 253512210 6814624
bzip2_3 249687 479882052 115277700
bzip2_4 1676991 878405761 148328837
bzip2_5 1471941 636991494 66470614
bzip2_6 2532973 499311315 46659535
cactusADM_1 921 1.667E+09 1638347722
calculix_1 292937 8.179E+10 2.721E+10

dealII_1 637944 9.638E+09 3702997850
gamess_1 71226 2.115E+09 845557941
gamess_2 94822 1.706E+09 973215692
gamess_3 105316 9.423E+09 3091842046
gcc_1 121652 125954760 9570987
gcc_2 448882 257486208 37621706
gcc_3 196276 135584262 15385895
gcc_4 172603 158218562 9468755
gcc_5 161262 126838013 13553830
gcc_6 213331 154307156 20188679
gcc_7 142393 239746514 26643040
gcc_8 109381 194460576 20120248
gcc_9 350422 105818453 10554208
GemsFDTD_1 1820 377977122 357852740
gobmk_1 504845 303331740 37570664
gobmk_2 884401 809819115 135773748
gobmk_3 483723 977022181 347132641
gobmk_4 567802 279714633 35362127
gobmk_5 561704 414931850 62979348
gromacs_1 404537 1.12E+09 504504822
h264ref_1 190506 1.33E+09 605894273
h264ref_2 190331 747986989 321559454
h264ref_3 673614 8.264E+09 4422079684
hmmer_1 1549022 2.216E+09 35505202
hmmer_2 1543836 4.397E+09 41474736
lbm_1 227 42665658 32942217
leslie3d_1 610 529258683 443713452
libquantum_1 57273 1.254E+10 3009396591
mcf_1 607635 2.069E+09 690305335
milc_1 1132 6.083E+09 2257099434
namd_1 2269578 985288902 145758661
omnetpp_1 102058 732083937 23405995
perlbench_1 438635 1.961E+09 388446892
perlbench_2 32379 590322600 212547492
perlbench_3 111628 719276959 377253717
povray_1 47414 735294691 40473467
sjeng_1 2772428 4.94E+09 136589445
soplex_1 1157099 1.614E+09 246245241
soplex_1 699130 1.905E+09 858662299
sphinx_1 244483 7.651E+09 5121578643
tonto_1 55423 9.24E+09 6341782946
wrf_1 31058 4.358E+09 3738161098
Xalan_1 269080 1.597E+09 1021390036
zeusmp_1 1716 168257099 162929849

E.Some comments on 456.hmmer, 458.sjeng, 401.bzip
The three worst cases for execution-time performance were
456.hmmer, 458.sjeng, and 401.bzip. There is a common set
of attributes for these: they have more unique strata elements
than the width of the hash table to store the strata (which was
256K), and only a very small percentage (under 3%) of the
strata elements had a consecutive trip count greater than one.
This strongly implies that the performance on these would

significantly increase with a wider (and thus less deep) hash
table for this particular data structure.

VI.ENGINEERING CONSIDERATIONS AND LIMITATIONS

While there were no formal collection-time performance
constraints or requirements, there were a lot of
implementation decisions made to minimize memory
consumption and maximize collection performance. The
benchmark 445.gobmk has a very large number of unique
paths; it required significant work to keep experimental runs
from swapping due to this characteristic. At the time
development started, PIN [3] did not support multi-threaded
tools, and this also contributed to the use of multiple
processes. Once the code had been rearranged to utilize
separate processes, 456.hmmer, 458.sjeng, and 401.bzip
drove algorithmic changes to boost performance.
Program phase change behavior was assumed; to compensate
for this, the hash tables are periodically sorted to reduce
pointer chasing. The amount of performance gain by doing
this was never carefully measured, but empirically seemed to
make things “go faster”.
Attempts were made to compute and construct the Strata1

Layer, but that very quickly was abandoned due to the
amount of additional memory consumed (many runs started
swapping). At present, the tool is limited to collect profiles
from single-threaded applications, and only the control flow
information.

VII.RELATED WORK

Whole Execution Traces [4] provides a unified format for
multiple kinds of profiles which are instrumented at compile
time with a statement (“Trimaran’s intermediate level
statement”) [10] granularity. Compression levels averaged
41 for the datasets involved; collection performance
overhead is not described except as executed on a simulator.
Whole Program Paths [2] was implemented with a static
binary instrumentation tool, and the collected control-flow
profiles were compressed separately from collection.
Compression levels ranged from 7.3 to 392.8; little detail
about execution time performance is provided – an
instrumented database had a 15.6x slowdown for trace
collection alone.
Nested Loop Recognition [8] analyzes data address traces
and reconstructs control flow loops. The first 100e6 load
instructions were traced, with compression ratios for control
flow achieved over 100,000 (vs. bzip2) in some cases. No
details of execution performance overhead were given.
Seekable Compressed Traces [9] utilizes multi-stage
algorithms tailored to the type of trace collected, and also
provides mechanisms to start playback and analysis at
arbitrary points in the trace. Compression ratios exceeded
130,000 for one test case; no performance data about trace
collection were given.
Of the mentioned works, only Whole Program Paths [2]
focused solely upon collection of control flow traces, making
direct comparison difficult. Curiously, there is little data
about absolute trace collection overhead performance,

possibly because the scale of trace collection of any kind to
date has exceeded the capacity of commonly available
hardware, or a need to use a simulator to collect some of the
data.

VIII.CONCLUSIONS & FUTURE DIRECTIONS

Numerous further investigations suggest themselves, but
none are currently underway. Some of these include:
• Investigation of isometric cyclical paths, esp. rotational

isomers (ABCD and BCDA are rotational isomers,
while ACBD and ABCD are simple isomers)

• Can phase behavior be easily detected from the
collected data?

• Higher Strata Layer compression beyond Layer0 - which
would require systems with much more memory. Some
initial experiments hinted that a combinatorial explosion
of data happens above Layer0, which means that the
pyramid diagram of [Figure 1] may be more correctly
shaped as an hourglass.

• Perform direct execution performance and compression
ratio comparisons of SPEC CPU2006 using the
techniques described in [2,4,8,9] as applied to complete
control-flow traces.

Using a DWPP tool, it is possible to collect and store
complete program instruction traces on a reasonably
configured computer system with moderate overhead. This
may enable broader investigations into path and strata
characteristics on a wide range of arbitrary applications.
Such a tool also provides a means of non-statistical
(lossless) analysis for tool chain developers and processor
architects when coupled with a playback mechanism. And as
applications continue to scale up in size and duration,
collection of relevant traces/profiles will continue to be a
challenge, and require new techniques to simply collect these
data.

IX.REFERENCES

[1] SPEC CPU2006 web site: http://www.spec.org/cpu2006
[2] J.R. Larus, “Whole Program Paths”, ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), pages
259-269, Atlanta, GA, May 1999.

[3] PIN web site: http://www.pintool.org. Chi-Keung Luk, Robert
Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, Kim Hazelwood. "Pin:
Building Customized Program Analysis Tools with
Dynamic Instrumentation," Programming Language Design and
Implementation (PLDI), Chicago, IL, June 2005, pp. 190-200.

[4] Xiangyu Zhang, Rajiv Gupta, "Whole Execution Traces," micro,
pp.105-116, 37th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO'04), 2004”

[5] Amitabh Srivastava , Alan Eustace, ATOM: a system
for building customized program analysis tools,
Proceedings of the ACM SIGPLAN 1994 conference on
Programming language design and implementation,
p.196-205, June 20-24, 1994, Orlando, Florida, United
States

http://portal.acm.org/citation.cfm?id=178260&dl=GUIDE&coll=GUIDE&CFID=29516162&CFTOKEN=12264990
http://portal.acm.org/citation.cfm?id=178260&dl=GUIDE&coll=GUIDE&CFID=29516162&CFTOKEN=12264990
http://portal.acm.org/citation.cfm?id=178260&dl=GUIDE&coll=GUIDE&CFID=29516162&CFTOKEN=12264990
http://doi.acm.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1065010.1065034
http://www.pintool.org/
http://www.spec.org/cpu2006

[6] Valgrind: A Framework for Heavyweight Dynamic
Binary Instrumentation.
Nicholas Nethercote and Julian Seward.
Proceedings of ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation (PLDI 2007), San Diego,
California, USA, June 2007.

[7] puredb source code: http://pureftpd.sourceforge.net/puredb/
[8] Ketterlin, A. and Clauss, P. 2008. Prediction and trace compression of

data access addresses through nested loop recognition. In
Proceedings of the Sixth Annual IEEE/ACM international
Symposium on Code Generation and Optimization (Boston, MA,
USA, April 05 - 09, 2008). CGO '08.

[9] T. Moseley, D. Grunwald, and R. V. Peri. Seekable compressed
traces. In Proceedings of the 2007 IEEE International Symposium on
Workload Characterization (IISWC), 2007.

[10] The Trimaran Compiler Research Infrastructure. Tutorial Notes,
November 1997.

http://pureftpd.sourceforge.net/puredb/
http://valgrind.org/docs/valgrind2007.pdf
http://valgrind.org/docs/valgrind2007.pdf

	I. INTRODUCTION
	II. Tool Overview
	A. Some definitions and abbreviations

	III. The Implementation
	A. Path Construction
	B. Strata construction
	C. The compression server
	D. Reported results & data files

	IV. Implementation Environment
	V. Results
	A. Execution time performance
	B. Compression
	C. Path statistics
	D. Strata statistics
	E. Some comments on 456.hmmer, 458.sjeng, 401.bzip

	VI. Engineering Considerations And Limitations
	VII. Related Work
	VIII. Conclusions & Future Directions
	IX. References

